Although researchers are actively investigating methods to improve fire detector performance, few studies have investigated fire detectors that detect the type of fire. Fire type detection serves a key role in quickly extinguishing fires and preventing their spread. We present a non-dispersive infrared (NDIR)-based dual-channel mid-infrared (mid-IR) method that can detect and classify aerosol particles and gases. 4.2 μm and 4.7 μm mid-IR light emitting diodes (LEDs) light sources with strong absorption for CO2 and CO are employed. and, and the mid-IR LEDs are modulated with 900 Hz and 1,000 Hz, respectively to increase the signal-to-noise ratio and reduce interference between the light sources. The modulated lights pass through the lenses and sample, and are acquired by a photodetector. The transmittances of the 4.2 μm and 4.7 μm lights are measured to detect the aerosol particles and gases, and the aerosol particles and gases are classified via hierarchical clustering using the measured transmittances and the ratio between the measured transmittances. Various aerosol particles and gases are detected by measuring the transmittance, and the aerosol particles and gases are classified by calculating the distance between clusters. Spectral transmittances analysis of different wavelength bands will enable the detection of various aerosol particles and gases, and further improve the classification accuracy. Furthermore, this method can be applied to fire detection to develop a highly useful technique that can detect and classify fire smoke and rapidly detect the type of fire.
KSP Keywords
Aerosol particle, Fire detection, Fire detector, Hierarchical Clustering, IR light, Key role, Light sources, Mid-IR, Mid-infrared(MIR), Mid-infrared sensor, Signal noise ratio(SNR)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.