ETRI-Knowledge Sharing Plaform



논문 검색
구분 SCI
연도 ~ 키워드


학술지 A Thermo-Mechanically Robust Compliant Electrode Based on Surface Modification of Twisted and Coiled Nylon-6 Fiber for Artificial Muscle with Highly Durable Contractile Stroke
Cited 1 time in scopus Download 208 time Share share facebook twitter linkedin kakaostory
윤성률, 문성철, 박승구, 황인욱, 최미정
Polymers, v.14 no.17, pp.1-13
In this paper, we propose a novel and facile methodology to chemically construct a thin and highly compliant metallic electrode onto a twisted and coiled nylon-6 fiber (TCN) with a three-dimensional structure via surface modification of the TCN eliciting gold-sulfur (Au-S) interaction for enabling durable electro-thermally-induced actuation performance of a TCN actuator (TCNA). The surface of the TCN exposed to UV/Ozone plasma was modified to (3-mercaptopropyl)trimethoxysilane (MPTMS) molecules with thiol groups through a hydrolysis-condensation reaction. Thanks to the surface modification inducing strong interaction between gold and sulfur as a formation of covalent bonds, the Au electrode on the MPTMS-TCN exhibited excellent mechanical robustness against adhesion test, simultaneously could allow overall surface of the TCN to be evenly heated without any significant physical damages during repetitive electro-thermal heating tests. Unlike the TCNAs with physically coated metallic electrode, the TCNA with the Au electrode established on the MPTMS-TCN could produce a large and repeatable contractile strain over 12% as lifting a load of 100 g even during 2000 cyclic actuations. Demonstration of the durable electrode for the TCNA can lead to technical advances in artificial muscles for human-assistive devices as well as soft robots those requires long-term stability in operation.
KSP 제안 키워드
100 G, 3-mercaptopropyl)trimethoxysilane (MPTMS, Adhesion test, Artificial Muscle, Assistive devices, Au electrode, Covalent bonds, Electro-Thermal, Heating test, Hydrolysis-condensation reaction, Long-Term Stability
본 저작물은 크리에이티브 커먼즈 저작자 표시 (CC BY) 조건에 따라 이용할 수 있습니다.
저작자 표시 (CC BY)