Deep convolutional networks have been developed to detect prohibited items for automated inspection of X-ray screening systems in the transport security system. To our knowledge, the existing frameworks were developed to recognize threats using only baggage security X-ray scans. Therefore, the detection accuracy in other domains of security X-ray scans, such as cargo X-ray scans, cannot be ensured. We propose an object detection method for efficiently detecting contraband items in both cargo and baggage for X-ray security scans. The proposed network, MFA-net, consists of three plug-and-play modules, including the multiscale dilated convolutional module, fusion feature pyramid network, and auxiliary point detection head. First, the multiscale dilated convolutional module converts the standard convolution of the detector backbone to a conditional convolution by aggregating the features from multiple dilated convolutions using dynamic feature selection to overcome the object-scale variant issue. Second, the fusion feature pyramid network combines the proposed attention and fusion modules to enhance multiscale object recognition and alleviate the object and occlusion problem. Third, the auxiliary point detection head adopts an auxiliary head to predict the new keypoints of the bounding box to emphasize the localizability without requiring further ground-truth information. We tested the performance of the MFA-net on two large-scale X-ray security image datasets from different domains: a Security Inspection X-ray (SIXray) dataset in the baggage domain and our dataset, named CargoX, in the cargo domain. Moreover, MFA-net outperformed state-of-the-art object detectors in both domains. Thus, adopting the proposed modules can further increase the detection capability of the current object detectors on X-ray security images.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.