In order to the immense demand for the development of energy-storage systems, layer-optimized graphene and chemically modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were utilized as the electrode and electrochemical material, respectively, to fabricate a device that exhibited electrochromic and supercapacitive functions. The electrochemical properties of the device with the graphene electrode were compared with those of a similar device with ITO as the electrode, and a remarkable synergetic effect was observed in the former, likely owing to strong ?-? interactions between graphene and PEDOT:PSS. The colored and bleached transmittances of the device with the graphene electrode were 20.6% and 59.3%, respectively, at a wavelength of 650 nm, which are indicative of its electrochromic behavior. Furthermore, the galvanostatic charge/discharge curves, which are indicative of the electrochemical-energy-storage performances, were in good agreement with the clearly visible transmittance change of the device. The device with the graphene electrode exhibited a maximum areal capacitance of 1.08 mF cm?닋2 at a current density of 0.001 mA cm?닋2, which was higher than that of the ITO-based electrode. Our approach for fabricating graphene devices with modified PEDOT:PSS could be helpful in designing dual-function devices for promising electrochromic energy-storage platforms.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.