Sub-terahertz (THz)-band communication system has drawn much attention as a promising technology to provide future-proof high data rate services. In a photonics-based sub-THz communication system, the generation of THz wave using free running lasers enables us to make a simple, cost effective and frequency tunable implementation. On the other hand, commercially available lasers have relatively broader linewidth and a large carrier frequency offset (CFO). To mitigate the performance degradations due to phase noise and CFO, a carrier recovery digital signal processing (DSP) algorithm is studied for a sub-THz transmission system. We propose a novel phase estimation algorithm to avoid cyclic slips while minimizing phase estimation error to improve BER performance. Our proposed phase recovery DSP algorithm is demonstrated in a 16-quadrature amplitude modulation (QAM) in a 0.3 THz band photonics-based transmission system. Experimental results show that the measured BER are improved from 8.8×10-3 to 3.6×10-3 in a 120 Gb/s 16-QAM transmission using the proposed algorithm. A wide range of CFO estimation is also supported for a sub-THz wireless transmission system using off-the-shelf lasers. Recovery of a CFO between -5 GHz and 5 GHz was also successfully demonstrated.
KSP Keywords
16 quadrature amplitude modulation(16QAM), 5 GHz, BER performance, CFO estimation, Carrier Frequency Offset, DSP algorithm, Digital Signal Processing, High data rate, Off-the-shelf, Phase recovery, Quadrature-amplitude modulation(QAM)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.