This communication presents a microstrip comb-line array antenna for the low sidelobe level (SLL) in the millimeter wave. As the width of the conventional stub-shaped radiating element becomes wider, not only the longitudinal current but also the transverse current increases; the longitudinal and transverse currents generate the co-and cross-polarized radiation, respectively. To reduce the transverse current flows on the large-width radiating element, the width of the connecting part with the feeding line in the radiating element is narrowed. In addition, the transverse current can be further reduced by adding a notch on the top of the radiating element. These two deformed radiating elements are proposed and used to design 18-element comb-line array antennas according to the array design procedure based on the radiation conductance. The array antennas were designed for the SLL of-20 dB at 79 GHz. The prototypes are fabricated and the antenna performance was measured. From the measurement results, the comb-line antenna composed only of the conventional stub-shaped elements shows the SLL of about-16.58 dB, whereas the array antenna using the proposed elements has the SLL of-19.4 dB. This communication demonstrates the feasibility of the proposed elements for low SLL, through analysis and measurement.
KSP Keywords
79 GHz, Analysis and measurement, Antenna performance, Array antenna, Array design, Design procedure, Line array, Millimeter-wave band, Radiating Element(RE), comb-line antenna, connecting part
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.