A real-time dose-guidance is highly desirable for monitoring the accuracy of the radiation treatment during irradiation. We present a sequentially processed image reconstruction algorithm (SPIRA) for in-beam TOF-PET that has the potential to provide concurrent imaging of the positron distributions from list-mode TOF-PET data in particle therapy. The SPIRA employs the maximum-likelihood (ML) criterion and reconstructs an image in the continuous-coordinate event space. In parallel, a serial processor (SP) is adopted to support concurrent imaging. The algorithm has been applied to computer simulation data generated for its potential use in in-beam TOF-PET monitoring of dose distributions in proton therapy, including a full-ring system and a dual-head partial-ring system. We considered various coincidences resolving times (CRTs) for the systems including 300혻ps and 600혻ps. Two opening angles 횠, 45 and 90째, were considered in the partial-ring geometry. The images generated by the SPIRA appear to provide better resolution and contrast recovery than by the conventional image reconstruction method in which the events are simply placed at the computed positions based on the TOF measurement. We believe that SPIRA can be useful for in vivo treatment verification in a real-time dose-guided particle therapy.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.