Most recent domain adaptation (DA) methods deal with unsupervised setup, which requires numerous target images for training. However, constructing a large-scale image set of the target domain is occasionally much harder than preparing a smaller number of image and label pairs. To cope with the problem, a great attention is recently paid to supervised domain adaptation (SDA), which takes an extremely small amount of labeled target images for training (e.g., at most three examples per category). In the SDA setup, adapting deep networks towards target domain is very challenging due to the lack of target data, and we tackle this problem as follows. Given labeled images from source and target domains, we first extract deep features and project them to hyper-spherical space via l2-normalization. Afterwards, an additive angular margin loss is embedded so that deep features of both domains are compactly grouped on the basis of shared class prototypes. To further relieve domain discrepancy, a pairwise spherical feature alignment loss is incorporated. All of our loss functions are defined in the hyper-spherical space, and the advantage of each ingredient is analyzed in the literature. Comparative evaluation results demonstrate that the proposed approach is superior to existing SDA methods, achieving 60.7% (1-shot) and 64.4% (3-shot) average accuracies for the DomainNet benchmark dataset using the ResNet-34 backbone. In addition, by applying a semi-supervised learning scheme to a network initialized by our SDA method, we achieve the state-of-the-art performance on semi-supervised domain adaptation (SSDA) as well.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.