This paper presents the topology of a novel approach to magnetic communication using a differential magnetic induction (MI)-based receiver and a differential MI receiving sensor. In this paper, a differential MI sensor based on two ferromagnetic cores is proposed as a receiving sensor, unlike the air coil-type MI sensor in the conventional search coil sensor concept. This differential MI sensor has the advantages of ultra-high sensitivity characteristics of the pT/ $\surd $ Hz level, which can detect weak magnetic fields in magnetic communication; moreover, the sensor is smaller than a conventional air coil MI sensor. The proposed differential MI sensor contributes to improving sensor performance by increasing its signal-to-noise ratio. The design and fabrication of the proposed MI sensor were based on a printed circuit board (PCB). The pickup coil of the PCB-based MI sensor directly wound the pickup coil onto a ferromagnetic core composed of Ni-Zn ferrite material. To analyze the key factors that affected the performance of the receiver, the magnetic field-to-voltage conversion ratio (MVCR) and equivalent magnetic spectral density measurements of the proposed PCB-based MI sensor were performed. Wireless digital communication using quadrature phase shift keying (QPSK), which is less sensitive to noise and has a high data rate, was used to evaluate the proposed MI-based receiver. The transmitted and received waveforms were compared to confirm that the transmitted digital data were accurately received as a result of the final demodulation of the receiver. Additionally, several performance metrics, such as constellation and error vector magnitude, were measured. The results of the comprehensive analysis confirmed the applicability of the proposed differential MI-based receiver to a magnetic field.
KSP Keywords
Air coil, Coil sensor, Density measurement, Design and fabrication, Digital Communication, Digital data, Experimental assessment, Ferrite material, High data rate, Key factor, MI sensor
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.