Recent advances in convolutional neural networks have led to considerably accurate semantic segmentation tasks. However, previous works use a pre-trained backbone borrowed from image classification tasks with considerable computational complexity, resulting in large latencies. Many methods have been proposed to reduce the latency of the segmentation network without loss of accuracy. These methods have reported varying experimental results with different computing devices, acceleration techniques, and input image sizes. Although most studies claim that their results are state-of-the-art, it is necessary to reconsider whether they are being compared under the same conditions. We propose a performance evaluation method of real-time semantic segmentation models to compare the performance under the same conditions fairly. In addition, we carry out an empirical study to evaluate the performance of recent real-time semantic segmentation networks and make a comparative analysis between them. We train the segmentation models using the same input data and data augmentation method. Then, the performance of the segmentation methods is analyzed regarding accuracy and speed. In contrast to most studies that exclude the time required for the pre-processing and post-processing steps, we measured the actual processing time needed to perform semantic segmentation with a real dataset. Further, we measured the processing speed and power consumption of the segmentation models in embedded devices in which real-time segmentation is applied, unlike previous studies that measured performance on a PC. Experimental results showed that the real-time semantic segmentation methods could not run in real-time on embedded devices when considering the pre-processing and post-processing steps. By comprehensively considering the inference speed, energy consumption, and processing time of semantic segmentation models, the experimental results show that FasterSeg-S is suited for embedded devices.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.