In this study, we presented flat-topped coherent supercontinuum lasers with tunable repetition rates and programmable spectral bandwidths. Supercontinuum sources with ultra-broadband and high-repetition-rate coverage can be achieved by merging nonlinearly broadened electro-optic optical frequency combs with optical line-by-line spectrum shaping. Spectral bandwidth programming is implemented by iterative spectrum shaping and input power control of highly nonlinear stages, whereas repetition rate tuning is performed by modulation speed control in optical frequency combs. Herein, we implemented a programmable and tunable flat-topped supercontinuum with a maximum bandwidth and repetition rate of 55혻nm at 10혻dB and 50혻GHz, respectively. To clarify the coherence of the supercontinuum during tuning and programming, we performed a phase-noise analysis. We proposed a remarkably modified self-heterodyne method to measure the phase noise of each mode precisely by filtering specific supercontinuum taps in a Mach?밵ehnder interferometer. With this method, it has been proved that the single-sideband spectra in each mode are almost similar to that of the RF clock, indicating that our programmable and tunable supercontinuum generation process added minimal degradation to the phase noise properties. This study shows possibilities for generating hundreds of programmable and tunable flat-topped optical carriers with robustness and coherence.
KSP Keywords
Electro-Optic, Flat-Top, Heterodyne method, High repetition rate, Input power, Laser Source, Line spectrum, Modulation scheme, Power control(PC), Self-heterodyne, Speed control
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.