International Conference on Embedded Software (EMSOFT) 2022 / IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.4539-4550
Energy harvesting systems have emerged as an alternative to battery-operated Internet of Things (IoT) devices. To deal with frequent power outages in the absence of battery, energy harvesting systems rely on a capacitor-backed checkpoint mechanism also known as just-in-time (JIT) checkpointing. It checkpoints volatile data in nonvolatile memory (NVM) just before a power outage occurs - using the energy buffered in the capacitor - and restores the checkpointed data from NVM in the wake of the outage. While the JIT checkpointing gives an illusion that volatile data survive a power outage as if they were nonvolatile, it turns out that due to capacitor degradation, energy harvesting systems can unexpectedly fail the JIT checkpointing, losing or corrupting data across the outage. To address the problem, this article presents an operating system-driven solution called CapOS. At a high level, CapOS diagnoses the capacitor in a reactive yet safe manner. When the JIT checkpoint failure occurs, CapOS detects the capacitor degradation without causing the data corruption. To recover from such a capacitor error, CapOS electrically isolates the degraded capacitor - so that it restores its original capacitance by itself with the help of capacitor's resilient nature - and disables the JIT checkpointing. In case, power outages occur during the capacitor isolation, CapOS leverages undo logging with interval-based checkpointing for their recovery. Once the capacitor is fully recovered, CapOS gets back to the capacitor-based JIT checkpointing. The experimental results demonstrate that CapOS can effectively address the capacitor error of energy harvesting systems at a low run-time cost, without compromising the recovery of power outages.
KSP Keywords
An operating system, Capacitor-based, Error resilience, Nonvolatile memory(NVM), Run-Time, data corruption, energy harvesting(EH), harvesting systems, internet of things(IoT), just-in-time, power outage
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.