Various studies have been conducted on instance segmentation and made great strides over the past few years. Most recently, instance-specific mask generation via dynamic kernel predictions has shown the significant performance improvement even without bounding boxes as well as anchors. However, this scheme still does not fully consider dynamic properties since the size of the receptive field is not enough to cover the spatially-meaningful range due to memory limitations. Furthermore, the single-fused feature often fails to grasp complicated boundaries for objects of different sizes. In this paper, we propose the dynamic residual filtering method with the Laplacian pyramid, which separately restores the global layout and local boundaries of instance masks. Specifically, we firstly apply the Laplacian pyramid-based decomposition scheme to features encoded from the backbone and subsequently restore sub-band mask residuals from coarse to fine pyramid levels. To do this, we design spatially-aware convolution filters to progressively capture the residual form of mask features at each level of the Laplacian pyramid while holding deformable receptive fields with dynamic offset information. This is fairly desirable since global and local properties of mask features can be accurately restored with keeping the spatial flexibility through the invertible process of the Laplacian reconstruction. Experimental results on the COCO dataset demonstrate that our proposed method achieves the state-of-the-art performance, i.e., 42.7% AP. The code and model are publicly available at: https://github.com/tjqansthd/LapMask.
KSP Keywords
Art performance, Bounding Box, Convolution filters, Decomposition scheme, Different sizes, Dynamic offset, Dynamic properties, Filtering method, Global and local, Laplacian pyramid, Local properties
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.