22HH2700, Development of time-space based spectrum engineering technologies for the preemptive using of frequency,
Chong Young Jun
Abstract
For beyond fifth-generation (5G) and future wireless communications, spatial consistency that represents the correlation between propagation channel characteristics in close proximity has become one of the major issues in channel modeling to describe channels more realistically in emerging scenarios such as device-to-device (D2D). In this paper, we propose a novel path loss model based on multi-dimensional Gaussian process regression (GPR) that gives spatial consistency to channels in propagation environment by predicting local shadow fading while fitting large-scale path loss from measured data. The proposed model has a special structure consisting of a radial mean function and a local shadow fading term. In contrast to the log-distance path loss model and other regression-based approaches, the special structure of the proposed model provides good spatial consistency. Moreover, since the proposed model is based on GPR, it provides the uncertainty of the predicted path loss. We validate the performance of the proposed model in terms of prediction accuracy with the measurement datasets from two different indoor environments. Our experiments show that the proposed model predicts better than the log-distance path loss model, especially when spatial correlation gets more significant. The proposed model can be also used to simulate path loss in a general environment after training the measurement data.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.