Mobile devices perform cell search for initial access in cellular-based industrial Internet of Things (IoT) systems. Existing fifth-generation (5G) New Radio (NR) cell-search scheme provides timing synchronization and cell identification. Usage scenarios emerging with the growth of the IoT market require unprecedented precision, reliability, and scalability in the future network, and a shift toward high frequency bands can be one of the key enablers to achieve these stringent requirements. However, in high frequency bands, hardware impairments including carrier frequency offset and phase noise are exacerbated, and a sharp beam causes the problem of cell identity (ID) ambiguity that can reach further than a reduced cell coverage. In this paper, a cell-search scheme is proposed for time-critical industrial IoT over mobile networks operating in high frequency bands. To achieve high timing accuracy under the increased hardware impairments, primary synchronization signals are designed based on the distributed concatenations of a Zadoff-Chu sequence and its modification. Next, a secondary synchronization signal is designed based on the distributed concatenation of a Kasami sequence and its modification, which provides larger set of cell IDs and is robust to the impairments. Compared to 5G NR under the increased hardware impairments, our analysis and evaluation show that the proposed cell-search scheme has advantages such as 25 % lower timing detection complexity, 150 % larger set of cell IDs, up to 15 dB and 6 dB signal-to-noise ratio gain in terms of timing and cell ID detection performance, respectively, and 60 % shorter cell-search time, thereby realizing 80 % lower battery consumption.
KSP Keywords
Analysis and evaluation, As 2, Battery Consumption, Carrier Frequency Offset, Cell Coverage, Cell identification, Cell identity, Cell search, Fifth Generation(5G), Hardware impairments, High Frequency(HF)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.