ETRI-Knowledge Sharing Plaform

ENGLISH

성과물

논문 검색
구분 SCI
연도 ~ 키워드

상세정보

학술지 Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features
Cited 14 time in scopus Download 91 time Share share facebook twitter linkedin kakaostory
저자
Rafia Nishat Toma, Yangde Gao, Farzin Piltan, 임기창, 손동구, 윤태현, 유대승, 김종면
발행일
202211
출처
Sensors, v.22 no.22, pp.1-21
ISSN
1424-8220
출판사
MDPI
DOI
https://dx.doi.org/10.3390/s22228958
초록
In the machine learning and data science pipelines, feature extraction is considered the most crucial component according to researchers, where generating a discriminative feature matrix is the utmost challenging task to achieve high classification accuracy. Generally, the classical feature extraction techniques are sensitive to the noisy component of the signal and need more time for training. To deal with these issues, a comparatively new feature extraction technique, referred to as a wavelet scattering transform (WST) is utilized, and incorporated with ML classifiers to design a framework for bearing fault classification in this paper. The WST is a knowledge-based technique, and the structure is similar to the convolution neural network. This technique provides low-variance features of real-valued signals, which are usually necessary for classification tasks. These signals are resistant to signal deformation and preserve information at high frequencies. The current signal data from a publicly available dataset for three different bearing conditions are considered. By combining the scattering path coefficients, the decomposition coefficients from the 0th and 1st layers are considered as features. The experimental results demonstrate that WST-based features, when used with ensemble ML algorithms, could achieve more than 99% classification accuracy. The performance of ANN models with these features is similar. This work exhibits that utilizing WST coefficients for the motor current signal as features can improve the bearing fault classification accuracy when compared to other feature extraction approaches such as empirical wavelet transform (EWT), information fusion (IF), and wavelet packet decomposition (WPD). Thus, our proposed approach can be considered as an effective classification method for the fault diagnosis of rotating machinery.
KSP 제안 키워드
Bearing Fault Classification, Classification framework, Classification method, Convolution neural network(CNN), Discriminative feature, Empirical Wavelet Transform(EWT), Feature Extraction Techniques, High Frequency(HF), Knowledge-based, Motor Current, Real-valued
본 저작물은 크리에이티브 커먼즈 저작자 표시 (CC BY) 조건에 따라 이용할 수 있습니다.
저작자 표시 (CC BY)