In the machine learning and data science pipelines, feature extraction is considered the most crucial component according to researchers, where generating a discriminative feature matrix is the utmost challenging task to achieve high classification accuracy. Generally, the classical feature extraction techniques are sensitive to the noisy component of the signal and need more time for training. To deal with these issues, a comparatively new feature extraction technique, referred to as a wavelet scattering transform (WST) is utilized, and incorporated with ML classifiers to design a framework for bearing fault classification in this paper. The WST is a knowledge-based technique, and the structure is similar to the convolution neural network. This technique provides low-variance features of real-valued signals, which are usually necessary for classification tasks. These signals are resistant to signal deformation and preserve information at high frequencies. The current signal data from a publicly available dataset for three different bearing conditions are considered. By combining the scattering path coefficients, the decomposition coefficients from the 0th and 1st layers are considered as features. The experimental results demonstrate that WST-based features, when used with ensemble ML algorithms, could achieve more than 99% classification accuracy. The performance of ANN models with these features is similar. This work exhibits that utilizing WST coefficients for the motor current signal as features can improve the bearing fault classification accuracy when compared to other feature extraction approaches such as empirical wavelet transform (EWT), information fusion (IF), and wavelet packet decomposition (WPD). Thus, our proposed approach can be considered as an effective classification method for the fault diagnosis of rotating machinery.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.