ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article 통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석
Cited - time in scopus Download 1139 time Share share facebook twitter linkedin kakaostory
Authors
이정인, 박완기, 이일우, 김상하
Issue Date
2022-09
Citation
전기전자학회논문지, v.26, no.3, pp.355-363
ISSN
1226-7244
Publisher
한국전기전자학회
Language
Korean
Type
Journal Article
DOI
https://dx.doi.org/10.7471/ikeee.2022.26.3.355 23
Abstract
우리나라는 2050년 탄소중립을 목표로 신재생에너지 중심으로 에너지 공급원을 전환하고 확대하는 계획을 추진 중이다. 신재생에너지의 간헐적 특성으로 에너지 공급이 불안정성이 커짐에 따라 정확한 신재생에너지 발전량 예측의 중요성이 함께 커지고 있다. 이에 따라 정부는 신재생에너지를 집합화하여 관리하기 위한 소규모 전력중개시장을 개설하였고, 재생에너지 발전량 예측제도를 도입하여 예측정확도에 따라 정산금을 지급하는 제도를 시행 중이다. 본 논문에서는 우리나라 신재생에너지 전원의 대부분을 차지하는 태양광 발전에 대하여 통계적 및 인공지능 모형을 이용하여 예측모델을 구현하였으며, 각 모형의 예측정확도 결과를 비교 분석하였다. 비교 모델 중에서 CNN-LSTM(Convolutional Long Short-Term Memory Neural Networks) 모형이 가장 높은 성능을 가짐을 확인하였다. 예측정확도에 따른 예측제도 정산금 수익을 추정해보았고, 예측보유 기술 수준에 따라 수익 편차가 24% 정도 커질 수 있음을 확인하였다.
KSP Keywords
long-short term memory(LSTM), neural network(NN)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
CC BY NC