우리나라는 2050년 탄소중립을 목표로 신재생에너지 중심으로 에너지 공급원을 전환하고 확대하는 계획을 추진 중이다. 신재생에너지의 간헐적 특성으로 에너지 공급이 불안정성이 커짐에 따라 정확한 신재생에너지 발전량 예측의 중요성이 함께 커지고 있다. 이에 따라 정부는 신재생에너지를 집합화하여 관리하기 위한 소규모 전력중개시장을 개설하였고, 재생에너지 발전량 예측제도를 도입하여 예측정확도에 따라 정산금을 지급하는 제도를 시행 중이다. 본 논문에서는 우리나라 신재생에너지 전원의 대부분을 차지하는 태양광 발전에 대하여 통계적 및 인공지능 모형을 이용하여 예측모델을 구현하였으며, 각 모형의 예측정확도 결과를 비교 분석하였다. 비교 모델 중에서 CNN-LSTM(Convolutional Long Short-Term Memory Neural Networks) 모형이 가장 높은 성능을 가짐을 확인하였다. 예측정확도에 따른 예측제도 정산금 수익을 추정해보았고, 예측보유 기술 수준에 따라 수익 편차가 24% 정도 커질 수 있음을 확인하였다.
KSP Keywords
long-short term memory(LSTM), neural network(NN)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.