ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Conference Paper VCM 을 위한 다중 스케일 특징 압축 방법
Cited - time in scopus Share share facebook twitter linkedin kakaostory
Authors
한희지, 최민석, 정순흥, 곽상운, 추현곤, 정원식, 서정일, 최해철
Issue Date
2022-06
Citation
한국방송·미디어공학회 학술 대회 (하계) 2022, pp.1-3
Publisher
한국방송∙미디어공학회
Language
Korean
Type
Conference Paper
Abstract
최근 신경망 기반 기술들의 발달에 따라, 신경망 기술들은 충분히 높은 임무 수행 성능을 달성하고 있으며 사물인터넷, 스마트시티, 자율주행 등 다양한 환경을 고려한 응용 역시 활발히 연구되고 있다. 하지만 이러한 신경망의 임무 다양성과 복잡성은 더욱 많은 비디오 데이터가 요구되며 대역폭이 제한된 환경을 고려한 응용에서 이러한 비디오 데이터를 효과적으로 전송할 방법이 필요하다. 이에 따라 국제 표준화 단체인 MPEG 에서는 신경망 기계 소비에 적합한 비디오 부호화 표준 개발을 위해 Video Coding for Machines (VCM) 표준화를 진행하고 있다. 본 논문에서는 신경망의 특징 부호화 효율을 개선하기 위하여 VCM 을 위한 다중 스케일 특징 압축 방법을 제안한다. COCO2017 데이터셋의 검증 영상을 기반으로 제안방법을 평가한 결과, 압축된 특징의 크기는 원본 이미지의 0.03 배이며 6.8% 미만의 임무 정확도 손실을 보였다.
KSP Keywords
Video coding