Human activity recognition (HAR) based on ambient sensors aims to recognize a conducted activity. A large number of deep learning models (DLMs) for HAR have been proposed. In contrast, human activity prediction (HAP) aims to early predict an activity. Compared to HAR, the advantage of HAP is to prevent a person from being exposed to unexpected cases by early predicting the activity. However, few DLMs for HAP have been proposed. They predict the next activity via a non-end-to-end fashion, e.g., they take a sequence of consecutive activities where the activities were classified from the sensor information. Thus, the information that which sensors are activated is not used in the prediction. In this study, we propose an end-to-end HAP model to predict the next activity from a sequence of consecutive events. The model has an encoder, a classifier, and a regressor. The encoder gives an encoded vector by encoding events. The regressor learns temporal dependency from a sequence of encoded vectors to predict the next encoded vector. The classifier predicts the next activity using the next encoded vector. We use the Milan and Aruba datasets to study a prediction accuracy of the model. We compare our model with a non-end-to-end model based on long-term memory, taking a sequence of past activities. We show that our model achieves the better prediction accuracy than the non-end-to-end model by up to 4.73% and 7.39% for Milan and Aruba, respectively, meaning that the information related to events can be used in the prediction.
KSP Keywords
Ambient sensors, Consecutive events, End to End(E2E), Human activity prediction, Human activity recognition, Long-Term Memory, Prediction accuracy, Sensor information, Temporal dependencies, deep learning(DL), deep learning models
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.