22HH6200, Development of Transmission Technology for Ultra High Quality UHD,
Namho Hur
Abstract
Wireless backhaul has recently gained a significant amount of interest as a cost-effective solution in comparison with conventional backhaul technologies with dedicated microwave links or fiber optics. Self-interference cancellation (SIC) is an enabling technology that allows wireless backhaul to operate in the more spectrum-efficient in-band full-duplex (IBFD) operation mode instead of the out-of-band mode. Compared to Wi-Fi IBFD transceivers, wireless in-band backhaul systems face some unique challenges, such as significantly higher transmission power and much larger propagation delay spread for the self-interference signal, especially in the low-frequency bands under 1 GHz, which often prevent accurate SIC performance. The SIC is often implemented with an interference-cancelling filter, where the filter weights are essentially the channel estimates of the self-interference signals. In this paper, a frequency-domain Radio Frequency (RF) SIC (RF-SIC) framework with a novel filter weight optimization algorithm is proposed to tackle the challenges of wireless in-band backhaul. The proposed RF-SIC does not require a dedicated training phase which needs to stop the transmission of the backhaul signal. Moreover, it has the capability of tracking the self-interference channel variation since the filter weights are updated in a block-by-block fashion.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.