21HH4900, Immersive Media Research Laboratory,
Jeongil Seo
Abstract
Visual object tracking, one of the main topics in computer vision, aims to chase a target object in every frame of the video sequences. In particular, Siamese-based network architectures have been adopted widely for visual object tracking due to their correlation-based nature. On the other hand, the features encoded from the target template and the search image in Siamese branches still suffer from ambiguities, which are driven by complicated real-world environments, e.g., occlusions and rotations. This paper proposes the Siamese feedback network for robust object tracking. The key idea of the proposed method is to encode target-relevant features accurately via the feedback block, which is defined by a combination of attention and refinement modules. Specifically, interdependent features are extracted through self- and cross-attention operations. Subsequently, such re-calibrated features are refined in both spatial and channel-wise manner. Those are fed back to the input of the feedback block again via the feedback loop. This is desirable because the high-level semantic information guides the feedback block to learn more meaningful properties of the target object and its surroundings. The experimental results show that the proposed method outperforms the state-of-the-art Siamese-based methods with a gain of 0.72% and 1.69% for the expected average overlap on the VOT2016 and VOT2018 datasets, respectively. Overall, the proposed method is effective for visual object tracking, even with complicated real-world scenarios.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.