Conference Paper
Toward Effective Deep Reinforcement Learning for 3D Robotic Manipulation: Multimodal End-to-End Reinforcement Learning from Visual and Proprioceptive Feedback
Conference on Neural Information Processing Systems (NeurIPS) 2022, pp.1-18
Language
English
Type
Conference Paper
Abstract
Sample-efficient reinforcement learning (RL) methods capable of learning directly from raw sensory data without the use of human-crafted representations would open up real-world applications in robotics and control. Recent advances in visual RL have shown that learning a latent representation together with existing RL algorithms closes the gap between state-based and image-based training. However, image-based training is still significantly sample-inefficient with respect to learning in 3D continuous control problems (for example, robotic manipulation) compared to state-based training. In this study, we propose an effective model-free off-policy RL method for 3D robotic manipulation that can be trained in an end-to-end manner from multimodal raw sensory data obtained from a vision camera and a robot’s joint encoders, without the need for human-crafted representations. Notably, our method is capable of learning a latent multimodal representation and a policy in an efficient, joint, and end-to-end manner from multimodal raw sensory data. Our method, which we dub MERL: Multimodal End-to-end Reinforcement Learning, results in a simple but effective approach capable of significantly outperforming both current state-of-the-art visual RL and state-based RL methods with respect to sample efficiency, learning performance, and training stability in relation to 3D robotic manipulation tasks from DeepMind Control.
KSP Keywords
Continuous control, Control problems, Current state, Deep reinforcement learning, Effective model, End to End(E2E), Image-based, Learning performance, Model-free, Multimodal representation, Real-world applications
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.