Thermomechanical analysis of monolithic microwave integrated circuit (MMIC) packaging is essential to guarantee the reliability of radio frequency/microwave applications. However, a method for fast and accurate analysis of MMIC packaging structures has not been developed. Here, a machine learning (ML)-based solution for thermomechanical analysis of MMIC packaging is demonstrated. This ML-based solution analyzes temperature and thermal stresses considering key design parameters, including material properties, geometric characteristics, and thermal boundary conditions. Finite element simulation with the Monte Carlo method is utilized to prepare a large dataset for supervised learning and validation of the ML solution, and a laser-assisted thermal experiment is conducted to verify the accuracy of the simulation. After data preparation, regression tree ensemble and artificial neural network (ANN) learning models are investigated. The results show that the ANN model accurately predicts the outcomes with extremely low computing time by analyzing the high-dimensional dataset. Finally, the developed ML solution is deployed as a web application format for facile approaches. It is believed that this study will provide a guideline for developing ML-based solutions in chip packaging design technology.
KSP Keywords
ANN model, Artificial neural network (ann), Computing time, Design technology, Fast and accurate, Geometric characteristics, High-dimensional, Key design, Large data sets, Laser-assisted, Learning model
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.