An insulator-to-metal transition (IMT) is an emergent characteristic of quantum materials. When the IMT occurs in materials with interacting electronic and lattice degrees of freedom, it is often difficult to determine if the energy gap in the insulating state is formed by Mott electron?밻lectron correlation or by Peierls charge-density wave (CDW) ordering. To solve this problem, we investigate a representative material, vanadium dioxide (VO2), which exhibits both strong electron?밻lectron interaction and CDW ordering. For this research, VO2 films of different thicknesses on rutile (001) TiO2 substrates have been fabricated. X-ray diffraction (XRD) data show that ultrathin VO2 films with thickness below 7.5 nm undergo the IMT between rutile insulator below Tc and rutile metal above Tc, while an ultrathin VO2 film with a thickness of 8 nm experiences the structural phase transition from the monoclinic structure below Tc to the rutile structure above Tc. Infrared and optical measurements on a film of 7.2 nm thickness, below Tc, reveal the energy gap of 0.6 eV in the rutile insulator phase and the absence of the 2.5 eV bonding-antibonding CDW structure. Above Tc, a Drude feature in the optical conductivity reveals the IMT to a metallic phase. These results suggest that for VO2 films below a critical thickness of about 7.5 nm, the IMT occurs in the rutile structure of VO2 without the Peierls lattice distortion.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.