The learning-based multiview stereo (MVS) methods for three-dimensional (3D) reconstruction generally use 3D volumes for depth inference. The quality of the reconstructed depth maps and the corresponding point clouds is directly influenced by the spatial resolution of the 3D volume. Consequently, these methods produce point clouds with sparse local regions because of the lack of the memory required to encode a high volume of information. Here, we apply the atrous spatial pyramid pooling (ASPP) module in MVS methods to obtain dense feature maps with multiscale, long-range, contextual information using high receptive fields. For a given 3D volume with the same spatial resolution as that in the MVS methods, the dense feature maps from the ASPP module encoded with superior information can produce dense point clouds without a high memory footprint. Furthermore, we propose a 3D loss for training the MVS networks, which improves the predicted depth values by 24.44%. The ASPP module provides state-of-the-art qualitative results by constructing relatively dense point clouds, which improves the DTU MVS dataset benchmarks by 2.25% compared with those achieved in the previous MVS methods.
KSP Keywords
3D volume, Contextual information, Depth Map, Depth inference, Feature Map, High volume, Learning-based, Long-range, Multi-view stereo, Point clouds, Receptive field
This work is distributed under the term of Korea Open Government License (KOGL)
(Type 4: : Type 1 + Commercial Use Prohibition+Change Prohibition)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.