Recently, interest in well-being has been increasing rapidly, and one way to do this is to deal with stress wisely. In order to manage or relieve stress, it is necessary to identify the current stress status and respond appropriately. Many existing studies have been conducted to detect stress, and lately many deep learning-based stress detection methods have been proposed. However, there is a room for improving the accuracy, and this paper proposes a novel deep learning algorithm for stress detection. The proposed model is based on long-term recurrent convolutional networks (LRCN) and an attention module, and we named this as Attention-LRCN. We used WESAD dataset which provides photoplethysmography (PPG) signals with normal and stress statuses for 15 subjects. The proposed method classifies the PPG signal into stress and normal statuses using a combination of convolutional neural networks (CNN) and long short-term memory (LSTM) layers. Since the PPG signals contain human interference, we utilized an attention module to reduce the effects of noise on the PPG signal. We compare Attention-LRCN with the state-of-the-art method for stress detection, and experimental results demonstrate that our proposed method is more effective in the stress detection application. The proposed method achieved 97.11 % and 95.47% for the accuracy and F1-score, respectively, and these metrics are 0.61 % and 2.1 % higher than the state-of-the-art method.
KSP Keywords
Convolution neural network(CNN), Convolutional networks, Detection Method, F1-score, Learning-based, Long-short term memory(LSTM), PPG signal, Proposed model, Stress detection, current stress, deep learning(DL)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.