ETRI-Knowledge Sharing Plaform

KOREAN
논문 검색
Type SCI
Year ~ Keyword

Detail

Journal Article 물체탐색과 전경영상을 이용한 인공지능 멀티태스크 성능 비교
Cited - time in scopus Download 122 time Share share facebook twitter linkedin kakaostory
Authors
정민혁, 김상균, 이진영, 추현곤, 이희경, 정원식
Issue Date
2022-05
Citation
방송공학회논문지, v.27, no.3, pp.308-317
ISSN
1226-7953
Publisher
한국방송공학회
Language
Korean
Type
Journal Article
DOI
https://dx.doi.org/10.5909/JBE.2022.27.3.308
Abstract
딥러닝 기반 머신 비전 기술을 이용한 영상분석 과정에서 전송되고 저장되는 방대한 양의 동영상 데이터의 용량을 효율적으로 줄이기 위한 연구들이 진행 중이다. MPEG(Moving Picture Expert Group)은 VCM(Video Coding for Machine)이라는 표준화 프로젝트를 신설해 인간을 위한 동영상 부호화가 아닌 기계를 위한 동영상 부호화에 대한 연구를 진행 중이다. 그 중 한 번의 영상 입력으로 여러 가지 태스크를 수행하는 멀티태스크에 대한 연구를 진행하고 있다. 본 논문에서는 효율적인 멀티태스크를 위한 파이프라인을 제안한다. 제안하는 파이프라인은 물체탐지를 선행해야 하는 각 태스크들의 물체탐지를 모두 수행하지 않고 한번만 선행하여 그 결과를 각 태스크의 입력으로 사용한다. 제안하는 멀티태스크 파이프라인의 효율성을 알아보기 위해 입력영상의 압축효율, 수행시간, 그리고 결과 정확도에 대한 비교 실험을 수행한다. 실험 결과 입력 영상의 용량이 97.5% 이상 감소한데 반해 결과 정확도는 소폭 감소하여 멀티태스크에 대한 효율적인 수행 가능성을 확인할 수 있었다.
KSP Keywords
Moving picture, expert group, video coding
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
CC BY NC ND