22HH3800, Development of Low Power multiple access core technology for Global IoT Service using Cubesat,
Ryu Joon Gyu
Abstract
This study proposes a spatio-temporal geographical information-guided neural network to predict multi-step ahead space-time series of ocean waves. The network is designed to learn the ocean wave dynamics from external atmospheric forcing and internal wave processes. It also captures the nonlinear relationships in multiple input and at the spatial and temporal levels and shares their dependencies. The model learns these dependencies through a convoluted encoded latent feature, while a decoder predicts the space-time series of ocean waves from the latent representations. The model is trained on 35 years of a state-of-the-art global reanalysis dataset produced at 1-hour temporal and 25 km spatial resolutions around the Korean Peninsula. It is evaluated by predicting the same resolution's multi-step ahead space-time series of ocean waves for a 48-hour forecast lead time for the 5 years not used for training. We conducted an ablation experiment to determine the optimal model architecture, input variable, and training period. The prediction results are compared and analyzed with the in-situ ocean wave measurements at the 18 observation stations. We consider the prediction results according to the start time of prediction with the in-situ measurements and hindcast results to examine the performance on the high waves that caused wave-induced disaster.
KSP Keywords
Atmospheric forcing, Geographic Information, Global reanalysis, In-situ measurements, Korean Peninsula, Latent feature, Latent representations, Model architecture, Multi-step, Non-linear relationship, Ocean waves
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.