In this paper, we propose Cold-CFGAN, a collab-orative filtering using two Conditional Generative Adversarial Networks (CGANs). In Cold-CFGAN, one CGAN is used for data augmentation of cold-start users, and the other CGAN is used to recommend items using user condition vectors. Cold-CFGAN research uses an additional GAN model to generate data for cold-start users to resolve the cold start problem that occurs when implementing CGAN-based collaborative filtering and to further improve the accuracy of the model. To this end, we first identified the performance degradation problem of cold-start users through a series of preliminary experiments using an existing conditional GAN-based collaborative filtering (CFGAN). Then, we used the user profile and item purchase data to express the number of purchased items per user in the form of a percentile, and identified cold-start users with few purchase items. Using the profile of the identified cold-start user data, we found the data of the Item-Rich user with the most similar profile to the cold-start user based on the cosine similarity, and using the data of the Item-Rich user, we applied partial masking method to create augmented cold-start users. Then we train user augmentation GAN to generate fake Item-Rich user using the augmented cold -start user and corresponding Item-Rich user in real data. We use trained generator to generate Item-Rich user corresponding to cold-start user in real dataset. Then, we applied the generated Item-Rich user data to train the conditional GAN-based collaborative filtering and after training, we performed experiment. Through the experiment, we found improved performance for cold start users compared to the traditional approach, and also improved overall performance.
KSP Keywords
Cold-start Problem, Cold-start users, Collaborative filtering(CF), Cosine similarity, Data Augmentation, GaN-Based, Masking method, Overall performance, Real data, Similar profile, Traditional approach
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.