Journal Article
Deep learning‐based multimodal fusion network for segmentation and classification of breast cancers using B‐mode and elastography ultrasound images
Ultrasonography is one of the key medical imaging modalities for evaluating breast lesions. For differentiating benign from malignant lesions, computer-aided diagnosis (CAD) systems have greatly assisted radiologists by automatically segmenting and identifying features of lesions. Here, we present deep learning (DL)-based methods to segment the lesions and then classify benign from malignant, utilizing both B-mode and strain elastography (SE-mode) images. We propose a weighted multimodal U-Net (W-MM-U-Net) model for segmenting lesions where optimum weight is assigned on different imaging modalities using a weighted-skip connection method to emphasize its importance. We design a multimodal fusion framework (MFF) on cropped B-mode and SE-mode ultrasound (US) lesion images to classify benign and malignant lesions. The MFF consists of an integrated feature network (IFN) and a decision network (DN). Unlike other recent fusion methods, the proposed MFF method can simultaneously learn complementary information from convolutional neural networks (CNNs) trained using B-mode and SE-mode US images. The features from the CNNs are ensembled using the multimodal EmbraceNet model and DN classifies the images using those features. The experimental results (sensitivity of 100 짹 0.00% and specificity of 94.28 짹 7.00%) on the real-world clinical data showed that the proposed method outperforms the existing single- and multimodal methods. The proposed method predicts seven benign patients as benign three times out of five trials and six malignant patients as malignant five out of five trials. The proposed method would potentially enhance the classification accuracy of radiologists for breast cancer detection in US images.
KSP Keywords
B-MODE, Benign and Malignant, Breast cancer Detection, Clinical data, Computer-aided diagnosis (CAD) systems, Convolution neural network(CNN), Decision network, Fusion method, Malignant lesions, Medical Imaging, Real-world
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.