Recent advances in virtual reality (VR) technologies such as immersive head-mounted display (HMD), sensing devices, and 3D printing-based props have become much more feasible for providing improved experiences for users in virtual environments. In particular, research on haptic feedback is being actively conducted to enhance the effect of controlling virtual objects. Studies have begun to use real objects that resemble virtual objects, i.e., passive haptic, instead of using haptic equipment with motor control, as an effective method that allows natural interaction. However, technical difficulties must be resolved to match transformations (e.g., position, orientation, and scale) between virtual and real objects to maximize the user's immersion. In this paper, we compare and explore the effect of passive haptic parameters on the user's perception by using different transformation conditions in immersive virtual environments. Our experimental study shows that the participants felt the same within a certain range, which seems to support the ?쐌inimum cue?? theory in giving sufficient sensory stimulation. Thus, considering the benefits of the model using our approach, haptic interaction in VR content can be developed in a more economical way.
KSP Keywords
3D Printing, Haptic Feedback, Haptic interaction, Head mounted displays(HMD), Immersive Virtual Environments, Motor Control, Natural interaction, Passive haptic, Sensing device, User's Perception, Virtual Reality
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.