As communication technology advances, various and heterogeneous data are communicated in distributed environments through network systems. Meanwhile, along with the development of communication technology, the attack surface has expanded, and concerns regarding network security have increased. Accordingly, to deal with potential threats, research on network intrusion detection systems (NIDSs) has been actively conducted. Among the various NIDS technologies, recent interest is focused on artificial intelligence (AI)-based anomaly detection systems, and various models have been proposed to improve the performance of NIDS. However, there still exists the problem of data imbalance, in which AI models cannot sufficiently learn malicious behavior and thus fail to detect network threats accurately. In this study, we propose a novel AI-based NIDS that can efficiently resolve the data imbalance problem and improve the performance of the previous systems. To address the aforementioned problem, we leveraged a state-of-the-art generative model that could generate plausible synthetic data for minor attack traffic. In particular, we focused on the reconstruction error and Wasserstein distance-based generative adversarial networks, and autoencoder-driven deep learning models. To demonstrate the effectiveness of our system, we performed comprehensive evaluations over various data sets and demonstrated that the proposed systems significantly outperformed the previous AI-based NIDS.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.