Background: Automatic diagnosis of depression based on speech can complement mental health treatment methods in the future. Previous studies have reported that acoustic properties can be used to identify depression. However, few studies have attempted a large-scale differential diagnosis of patients with depressive disorders using acoustic characteristics of non-English speakers. Objective: This study proposes a framework for automatic depression detection using large-scale acoustic characteristics based on the Korean language. Methods: We recruited 153 patients who met the criteria for major depressive disorder and 165 healthy controls without current or past mental illness. Participants' voices were recorded on a smartphone while performing the task of reading predefined text-based sentences. Three approaches were evaluated and compared to detect depression using data sets with text-dependent read speech tasks: conventional machine learning models based on acoustic features, a proposed model that trains and classifies log-Mel spectrograms by applying a deep convolutional neural network (CNN) with a relatively small number of parameters, and models that train and classify log-Mel spectrograms by applying well-known pretrained networks. Results: The acoustic characteristics of the predefined text-based sentence reading automatically detected depression using the proposed CNN model. The highest accuracy achieved with the proposed CNN on the speech data was 78.14%. Our results show that the deep-learned acoustic characteristics lead to better performance than those obtained using the conventional approach and pretrained models. Conclusions: Checking the mood of patients with major depressive disorder and detecting the consistency of objective descriptions are very important research topics. This study suggests that the analysis of speech data recorded while reading text-dependent sentences could help predict depression status automatically by capturing the characteristics of depression. Our method is smartphone based, is easily accessible, and can contribute to the automatic identification of depressive states.
KSP Keywords
Acoustic characteristics, Acoustic properties, Automatic diagnosis, CNN model, Convolution neural network(CNN), Data sets, Deep convolutional neural networks, Depression detection, Healthy controls, Korean language, Major depressive disorder(MDD)
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.