22HS4800, Development of semi-supervised learning language intelligence technology and Korean tutoring service for foreigners,
Lee Yunkeun
Abstract
A major challenge in education is to provide students with a personalized learning experience. This study aims to address this by developing a dialogue-based intelligent tutoring system (ITS) that imitates human expert tutors. The ITS asks questions, assesses student answers, provides hints, and even chats to encourage student engagement. We constructed the Dialogue-based Reading Comprehension Tutoring (DIRECT) dataset to simulate real-world pedagogical scenarios with the assessment labels and key sentences to support tutoring. The DIRECT dataset is based on RACE, which is a large-scale English reading comprehension dataset. In addition, we propose a neural pipeline approach to model the tutoring tasks and conduct a comprehensive analysis on the results, including a human evaluation. The results show that our model performs well in generating questions, assessing answers, and chatting, showing high potential although some challenges remain. The proposed model provides a good basis for further development of dialogue-based ITSs.
KSP Keywords
English reading, Further development, High potential, Human evaluation, Learning Experience, Personalized Learning, Proposed model, Reading comprehension, Real-world, Student engagement, comprehensive analysis
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.