Conventional approaches for the identification of liquid chemicals are bulky and harmful to the environment, detect a limited number of chemical species, produce high false alarm rates, or rely on complex/expensive spectrometers. In this study, a spectrometer-free, accurate metasurface-mediated liquid identification scheme was demonstrated based on optofluidic refractive index (RI) sensing in conjunction with vision intelligence algorithms. A metasurface device integrated into an optofluidic channel provides a polarization-independent focused vortex beam at a single wavelength of 1550 nm, which is highly sensitive to liquid chemicals. The beam patterns respond to the RI and transmission of chemicals, and thus effectively serve as their unique optical ?쐄ingerprints??. To realize vision intelligence, two deep-learning architectures??a convolutional neural network and a vision transformer??were adopted and trained to classify the beam patterns. A variety of liquid chemicals were successfully identified in situ with over 99% accuracy, requiring no spectrometers. The proposed approach is expected to corroborate the feasibility of artificial intelligence-powered detection schemes that can classify at single wavelengths, unlike conventional instrument-intensive techniques that are attentive to entire spectral responses.
KSP Keywords
1550 nm, Chemical species, Convolution neural network(CNN), False Alarm Rate, Highly sensitive, Identification scheme, Polarization-independent, Refractive index sensing, Single wavelength, Vortex beam, artificial intelligence
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.