Jun Ho Lee, Seong Hyun Kim, Jae Sang Heo, Jee Young Kwak, Chan Woo Park, Insoo Kim, Minhyeok Lee, Ho-Hyun Park, Yong-Hoon Kim, Su Jae Lee, Sung Kyu Park
Mechanically stretchable strain sensors gain tremendous attention for bioinspired skin sensation systems and artificially intelligent tactile sensors. However, high-accuracy detection of both strain intensity and direction with simple device/array structures is still insufficient. To overcome this limitation, an omnidirectional strain perception platform utilizing a stretchable strain sensor array with triangular-sensor-assembly (three sensors tilted by 45째) coupled with machine learning (ML) -based neural network classification algorithm, is proposed. The strain sensor, which is constructed with strain-insensitive electrode regions and strain-sensitive channel region, can minimize the undesirable electrical intrusion from the electrodes by strain, leading to a heterogeneous surface structure for more reliable strain sensing characteristics. The strain sensor exhibits decent sensitivity with gauge factor (GF) of ≈8, a moderate sensing range (≈0??35%), and relatively good reliability (3000 stretching cycles). More importantly, by employing a multiclass?뱈ultioutput behavior-learned cognition algorithm, the stretchable sensor array with triangular-sensor-assembly exhibits highly accurate recognition of both direction and intensity of an arbitrary strain by interpretating the correlated signals from the three-unit sensors. The omnidirectional strain perception platform with its혻neural network algorithm exhibits overall strain intensity and direction accuracy around 98% 짹 2% over a strain range of ≈0??30% in various surface stimuli environments.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.