Pedestrians are often obstructed by other objects or people in real-world vision sensors. These obstacles make pedestrian-attribute recognition (PAR) difficult; hence, occlusion processing for visual sensing is a key issue in PAR. To address this problem, we first formulate the identification of non-occluded frames as temporal attention based on the sparsity of a crowded video. In other words, a model for PAR is guided to prevent paying attention to the occluded frame. However, we deduced that this approach cannot include a correlation between attributes when occlusion occurs. For example, ?쐀oots?? and ?쐓hoe color?? cannot be recognized simultaneously when the foot is invisible. To address the uncorrelated attention issue, we propose a novel temporal-attention module based on group sparsity. Group sparsity is applied across attention weights in correlated attributes. Accordingly, physically-adjacent pedestrian attributes are grouped, and the attention weights of a group are forced to focus on the same frames. Experimental results indicate that the proposed method achieved 1.18% and 6.21% higher (Formula presented.) -scores than the advanced baseline method on the occlusion samples in DukeMTMC-VideoReID and MARS video-based PAR datasets, respectively.
KSP Keywords
Attribute recognition, Formula presented, Group Sparsity, Real-world, Vision sensor, occlusion processing, video based, visual sensing
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.