Flexible hydrogels are receiving significant attention for their application in wearable sensors. However, most hydrogel materials exhibit weak and one-time adhesion, low sensitivity, ice crystallization, water evaporation, and poor self-recovery, thereby limiting their application as sensors. These issues are only partly addressed in previous studies. Herein, a multiple-crosslinked poly(2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide-co-acrylamide) (P(SBMA-co-AAm)) multifunctional hydrogel is prepared via a one-pot synthesis method to overcome the aforementioned limitations. Specifically, ions, glycerol, and 2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide are incorporated to reduce the freezing point and improve the moisture retention ability. The proposed hydrogel is superior to existing hydrogels because it exhibits good stretchability (a strain of 2900%), self-healing properties, and transparency through effective energy dissipation in its dynamic crosslinked network. Further, 2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide as a zwitterion monomer results in an excellent gauge factor of 43.4 at strains of 1300–1600% by improving the ion transportability and achieving a strong adhesion of 20.9 kPa owing to the dipole–dipole moment. The proposed hydrogel is promising for next-generation biomedical applications, such as soft robots, and health monitoring.
KSP Keywords
Ammonium hydroxide, Biomedical applications, Dipole moment, Effective energy, Energy dissipation, Freezing point, Gauge Factor, Health monitoring, Hydrogel materials, Ionic hydrogel, Long term stability
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.