Vehicular communication and sensing technologies are key to enabling 6G Intelligent Autonomous Transportation Systems (IATS). With the introduction of massive sensors and artificial intelligence (AI) fusion applications, IATS is needed to support data transmission rates up to 10 Gb/s. Millimeter-wave (mmWave) technology has attracted extensive attention owing to abundant spectrum resources, which can support the timely transmission of massive data. However, performance degradation of mmWave due to signal blockage has become one of the critical technical challenges. Road bridges as one of the common obstacles in urban scenarios, which has severe blockage effects on communication links. Therefore, this paper comprehensively studies the impact of road bridge blockage effects on mmWave vehicle-to-infrastructure (V2I) links and proposes an empirical model that can accurately characterize the bridge blockage effect. First, we use a self-developed mmWave channel sounder to carry out channel measurements on typical urban roads. Measurement results indicate that a maximum extra propagation loss of up to 23 dB is caused by road bridges. In addition, to address the deficiencies of existing propagation prediction models, the Single Road Bridge (SRB) model is proposed in this work. This model reveals for the first time the extra propagation loss caused by the road bridge to the channel. Compared with existing models, the SRB model can make the mean absolute error (MAE) and root mean square error (RMSE) within 5 dB. The proposed SRB model is of great value for accurately simulating real-world road bridge blockage events when designing future IATS.
KSP Keywords
Autonomous Transportation Systems, Blockage effect, Carry out, Channel Sounder, Channel measurement, Communication link, Data transmission, Empirical model, Intelligent autonomous vehicles, Massive Data, Mean Absolute Error
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.