Temporal moment localization (TML) aims to retrieve the best moment in a video that matches a given sentence query. This task is challenging as it requires understanding the relationship between a video and a sentence, as well as the semantic meaning of both. TML methods using 2D temporal maps, which represent proposal features or scores on all moment proposals with the boundary of start and end times on the m and n axes, have shown performance improvements by modeling moment proposals in relation to each other. The methods, however, are limited by the coarsely pre-defined fixed boundaries of target moments, which depend on the length of training videos and the amount of memory available. To overcome this limitation, we propose a boundary matching and refinement network (BMRN) that generates 2D boundary matching and refinement maps along with a proposal feature map to obtain the final proposal score map. Our BMRN adjusts the fixed boundaries of moment proposals with predicted center and length offsets from boundary refinement maps. In addition, we introduce a length-aware proposal feature map that combines a cross-modal feature map and a similarity map between the predicted duration of the target moment and moment proposals. Our approach leads to improved TML performance on Charades-STA and ActivityNet Captions datasets, outperforming state-of-the-art methods by a large margin.
KSP Keywords
Feature map, Large margin, Natural language, cross-modal, state-of-The-Art
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.