Researchers in academics and companies working on location-based services (LBS) are paying close attention to indoor localization based on pedestrian dead reckoning (PDR) because of its infrastructure-free localization method. PDR is the fundamental localization technique that utilize human motion to perform localization in a relative sense with respect to the initial position. The size, weight, and power consumption of micromechanical systems (MEMS) embedded into smartphones are remarkably low, making them appropriate for localization and positioning. Traditional pedestrian PDR methods predict position and orientation using stride length and continuous integration of acceleration in step and heading system (SHS)-based PDR and inertial navigation system (INS)-PDR, respectively. However, these two approaches provide accumulations of error and do not effectively leverage the inertial measurement unit (IMU) sequences. The PDR navigation solution relays on the standard of the MEMS, which yields PDR with the acceleration and angular velocity from the accelerometer and gyroscope, respectively. However, low-cost small MEMSs endure enormous error sources such as bias and noise. Hence, MEMS assessments lead to navigation solution drifts when utilized as inputs to the PDR. As a consequence, numerous methods have been proposed to mitigate and model the errors related to MEMS. Deep learning-based dead reckoning algorithms are provided to address aforementioned issues owing to the end-to-end learning framework. This paper proposes a hybrid convolutional neural network (CNN) and long short-term memory network (LSTM)-based inertial PDR system that extracts inertial measurement units (IMU) sequence features. The end-to-end learning framework is introduced to leverage the efficiency of low-cost MEMS because data-driven solutions provide more complete knowledge of the ever-increasing data volume and computational power over the filtering model approach. A CNN-LSTM model was employed to capture local spatial and temporal features. Experiments conducted on odometry datasets collected from multi-sensor backpack devices demonstrated that the proposed architecture outperformed previous traditional PDR methods, demonstrating that the root mean square error (RMSE) for the best user was 0.52 m. On the handheld smartphone-only dataset the best achieved R2 metric was 0.49.
KSP Keywords
Accelerometer and gyroscope, Angular Velocity, Based Approach, Computational Power, Continuous Integration, Convolution neural network(CNN), Data Volume, Data-Driven, End to End(E2E), End-to-end learning, Error source
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.