A new multiple-input multiple-output (MIMO) receiver scheme for practical binary codes is proposed that provides consistent gains over conventional linear receivers. We first develop a practical successive integer forcing (IF) scheme based on practical binary codes rather than lattice codes. We then present the successive cancellation integer forcing (SC-IF) scheme, which combines and enhances successive IF and minimum mean squared error successive interference cancellation (MMSE-SIC). In this scheme, the receiver first decides whether individual decoding or IF sum decoding is appropriate for each data stream, and then conducts successive IF sum decoding only for selected streams while decoding the remaining streams using MMSE-SIC. The proposed SC-IF methodology mitigates the performance loss caused by mismatched IF filtering in fading channels, while attenuating the noise amplification caused by MMSE filtering. Extensive link-level simulations demonstrate that the proposed successive IF significantly improves the basic IF, and the SC-IF improves both the successive IF and MMSE-SIC, offering uniform improvements over conventional linear receivers for most channel correlation and variation parameters and modulation orders at comparable computational costs. These results illustrate the viability of SC-IF as a fundamental building block for high-performance MIMO receivers in 5G-Advanced and/or subsequent-generation communication systems.
KSP Keywords
Binary codes, Channel correlation, Communication system, Data stream, Fading Channels, High performance, Integer forcing, Linear receivers, Link level simulation, MMSE filtering, MMSE-SIC
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.