Numerous deep learning methods for acoustic scene classification (ASC) have been proposed to improve the classification accuracy of sound events. However, only a few studies have focused on continual learning (CL) wherein a model continually learns to solve issues with task changes. Therefore, in this study, we systematically analyzed the performance of ten recent CL methods to provide guidelines regarding their performances. The CL methods included two regularization-based methods and eight replay-based methods. First, we defined realistic and difficult scenarios such as online class-incremental (OCI) and online domain-incremental (ODI) cases for three public sound datasets. Then, we systematically analyzed the performance of each CL method in terms of average accuracy, average forgetting, and training time. In OCI scenarios, iCaRL and SCR showed the best performance for small buffer sizes, and GDumb showed the best performance for large buffer sizes. In ODI scenarios, SCR adopting supervised contrastive learning consistently outperformed the other methods, regardless of the memory buffer size. Most replay-based methods have an almost constant training time, regardless of the memory buffer size, and their performance increases with an increase in the memory buffer size. Based on these results, we must first consider GDumb/SCR for the continual learning methods for ASC.
KSP Keywords
Acoustic Scene Classification, Best performance, Buffer Size, Empirical study, Learning methods, Small buffer, Training time, classification accuracy, deep learning(DL), sound events
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.