In this paper, a printed monopole antenna with high-gain and dual-band characteristics for applications in wireless local area networks and the internet of things sensor networks is presented. The proposed antenna consists of a rectangular patch with multiple matching stubs surrounded to improve the impedance bandwidth of the antenna. The antenna incorporates a cross-plate structure which is seated at the base of the monopole antenna. The cross-plate consist of metallic plates aligned perpendicularly which enhances the radiations from the edges of the planar monopole to maintain uniform omnidirectional radiation patterns within the antenna’s operating band. Furthermore, a layer of frequency selective surface (FSS) unit cells and a top-hat structure is added to the antenna design. The FSS layer consist of three unit cells printed at the back side of the antenna. The top-hat structure is placed on top of the monopole antenna and comprises of three planar metallic structures arranged in a hat-like configuration. The coupling of both the FSS layer and the top-hat structure presents a large aperture to increase the directivity of the monopole antenna. Thus, the proposed antenna structure realizes a high gain without compromising the omnidirectional radiation patterns within the antenna’s operating band. A prototype of the proposed antenna is fabricated where good agreement is achieved between the measured and full-wave simulation results. The antenna achieves an impedance bandwidth |S11| < − 10 dB and VSWR ≤ 2 for the L and S band at 1.6–2.1 GHz and 2.4–2.85 GHz, respectively. Furthermore, a radiation efficiency of 94.2% and 89.7% is realized at 1.7 and 2.5 GHz, respectively. The proposed antenna attains a measured average gain of 5.2 dBi and 6.1 dBi at the L and S band, respectively.
KSP Keywords
Antenna design, Band characteristics, Dual-band, Frequency selective surfaces(FSS), Full-wave simulation, Internet of thing(IoT), Large aperture, Local Area Network(LAN), Metallic structure, Planar monopole, Plate structure
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.