As applications running on lightweight RISC-V processors become increasingly diverse and complex, the need for multicore processors supporting floating-point units (FPUs) is riseing, making processor designs using existing open-source RISC-V cores challenging. With the exception of a very few, most open lightweight RISC-V cores are integer cores without FPUs, which greatly reduces the design exploration space, making it impossible to design a processor optimized for each application. For example, most of these applications mainly perform integer operations, but occasionally perform floating-point operations. For them, a multicore processor with FPU per core is overkill and wastes power, which is a critical problem for processors where low-power design is paramount. To address the problem, we propose an external lightweight FPU that can be attached to any RISC-V integer core and a low-power multicore architecture using the designed FPU. For verification, we designed a RISC-V processor that implements all the proposed technologies, prototyped it on an FPGA device, and finally fabricated it as a System-on-Chip. Through experiments, it was confirmed that the proposed technology can cut energy consumption energy by up to 23%.
KSP Keywords
Consumption energy, Design Exploration, FPGA device, Floating-point operations, Low-Power design, Multicore architecture, Open source, RISC-V, System-On-Chip(SoC), energy consumption, multi-core processor
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.