In the human brain, attention plays a crucial role in encoding information into memory. Therefore, focused attention during encoding enhances the likelihood of information being effectively encoded and stored in memory. This phenomenon is creatively replicated in our proposed synaptic devices, which regulate the forgetting curves by manipulating the gate voltage. Thus, the proposed transistor devices separate long-term memory from long-lasting memory. TiO2-based synaptic transistors are used to replicate brain functions, from vision processing to memory retention. The photosensitive nature of TiO2 enables the utilization of both photo- and electric stimuli. The electrical properties of the synaptic devices induced by photostimulation replicate the human-vision process, while those elicited by electric stimulation simulate memory-retention capabilities. By applying a shallow trap with a short lifetime, light stimulation can be utilized to mimic the effects of short-term memory. A deep trap with a long lifetime is employed in electrical memory to replicate the phenomena associated with persisting memory. A simulation of the MNIST recognition of an artificial neural network constructed with the measured synaptic characteristics exhibit an accuracy rate of 92.96%, which indicates that the proposed device can be successfully incorporated into neuromorphic devices.
KSP Keywords
Accuracy Rate, Artificial Neural Network, Attention mechanism, Deep traps, Electrical memory, Electrical properties, Encoding information, Gate voltage, Human brain, Information perception, Long-Term Memory
This work is distributed under the term of Creative Commons License (CCL)
(CC BY NC ND)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.