Synthesizing realistic co-speech gestures is an important and yet unsolved problem for creating believable motions that can drive a humanoid robot to interact and communicate with human users. Such capability will improve the impressions of the robots by human users and will find applications in education, training, and medical services. One challenge in learning the co-speech gesture model is that there may be multiple viable gesture motions for the same speech utterance. The deterministic regression methods cannot resolve the conflicting samples and may produce over-smoothed or damped motions. We proposed a two-stage model to address this uncertainty issue in gesture synthesis by modeling the gesture segments as discrete latent codes. Our method utilizes RQVAE in the first stage to learn a discrete codebook consisting of gesture tokens from training data. In the second stage, a two-level autoregressive transformer model is used to learn the prior distribution of residual codes conditioned on input speech context. Since the inference is formulated as token sampling, multiple gesture sequences could be generated given the same speech input using top-k sampling. The quantitative results and the user study showed the proposed method outperforms the previous methods and is able to generate realistic and diverse gesture motions.
KSP Keywords
First stage, Gesture synthesis, Medical Services, Speech input, Top-K, Two-level, Two-stage model, User study, human users, humanoid robot, prior distribution
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.