Field electron emission from carbon nanotubes (CNT) is preceded by the transport of electrons from the cathode metal to emission sites. Specifically, a supporting layer indispensable for adhesion of CNT paste emitters onto the cathode metal would impose a potential barrier, depending on its work function and interfacial electron transport behaviors. In this paper, we investigated the supporting layer of silicon carbide and nickel nanoparticles reacted onto a Kovar alloy (Fe-Ni-Co) cathode substrate, which has been adopted for reliable CNT paste emitters. The X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electrical conductivity measurements showed that the reaction of silicon carbide and nickel nanoparticles on the Kovar metal strongly depends upon the post-vacuum-annealing conditions and can be classified into two procedures of a diffusion-induced reaction (DIR) and a diffusion-limited reaction (DLR). The prolonged annealing at 750 °C for 5 h before the main annealing of the CNT paste emitters at 800 °C for 5 min led to the DIR that has enhanced the Ni silicide phase and a lower potential barrier for the interfacial electron transport, resulting in increased and weakly temperature-dependent field electron emission from the CNT paste emitters. On the other hand, the DLR with only the main anneal of the CNT paste emitters at 800 °C for 5 min gave rise to a higher potential barrier for the electron transport and so lower and strongly temperature-dependent field electron emission. From the results of the interfacial electron transport for the DIR and DLR mechanisms in the CNT paste emitters, we concluded that the ambient temperature dependency of field electron emission from CNT tips in the moderate range of up to 400 °C, still controversial, is mainly attributed to the supporting layer of the CNT emitter rather than its intrinsic electron emission.
KSP Keywords
Ambient Temperature, Annealing conditions, CNT paste, Carbon nano-tube(CNT), Cathode substrate, Conductivity measurement, Diffusion-limited, Electrical Conductivity, Electron transport, Fe-Ni-Co(Nano WC-), Field electron emission(FE)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.