This paper proposes a spatiotemporal graph neural network capable of effective representation learning of the spatiotemporal interrelationships and interdependencies of in-situ observation data from multiple locations for multivariate multi-step ahead time-series forecasting. The propose model is largely composed of graph learning, spatial encoder, and temporal decoder, and ablation studies on variants of the three modules and comparative experiments with state-of-the-art deep neural networks for sequence modeling were also performed extensively. The proposed model showed improved predictability than conventional numerical model-based approaches or state-of-the-art models by applying consecutive multi-step ahead time-series prediction of sea surface temperature at multiple locations along the coast. For more rigorous performance evaluation, not only the overall performance of the test data, but also the performance of extreme cases included in the test data based on historical records were separately assessed. The prediction rationales were also presented through quantified relative contributions between neighbor locations using the trained adjacency matrix obtained through graph learning. The results showed that it is well consistent with the ocean physics and geographical domain knowledge, demonstrating the feasibility and reliability of the proposed method. Therefore, the proposed method shows sufficient potential to be used as a scientific tool for decision-making in extreme events such as marine heat waves or for operational ocean forecasting.
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.