Jang Hee Han, Sungyup Lee, Byounghwa Lee, Ock‑kee Baek, Samuel L. Washington III, Annika Herlemann, Peter E. Lonergan, Peter R. Carroll, Chang Wook Jeong, Matthew R. Cooperberg
Although there are several decision aids for the treatment of localized prostate cancer (PCa), there are limitations in the consistency and certainty of the information provided. We aimed to better understand the treatment decision process and develop a decision-predicting model considering oncologic, demographic, socioeconomic, and geographic factors. Men newly diagnosed with localized PCa between 2010 and 2015 from the Surveillance, Epidemiology, and End Results Prostate with Watchful Waiting database were included (n = 255,837). We designed two prediction models: (1) Active surveillance/watchful waiting (AS/WW), radical prostatectomy (RP), and radiation therapy (RT) decision prediction in the entire cohort. (2) Prediction of AS/WW decisions in the low-risk cohort. The discrimination of the model was evaluated using the multiclass area under the curve (AUC). A plausible Shapley additive explanations value was used to explain the model’s prediction results. Oncological variables affected the RP decisions most, whereas RT was highly affected by geographic factors. The dependence plot depicted the feature interactions in reaching a treatment decision. The decision predicting model achieved an overall multiclass AUC of 0.77, whereas 0.74 was confirmed for the low-risk model. Using a large population-based real-world database, we unraveled the complex decision-making process and visualized nonlinear feature interactions in localized PCa.
This work is distributed under the term of Creative Commons License (CCL)
(CC BY)
Copyright Policy
ETRI KSP Copyright Policy
The materials provided on this website are subject to copyrights owned by ETRI and protected by the Copyright Act. Any reproduction, modification, or distribution, in whole or in part, requires the prior explicit approval of ETRI. However, under Article 24.2 of the Copyright Act, the materials may be freely used provided the user complies with the following terms:
The materials to be used must have attached a Korea Open Government License (KOGL) Type 4 symbol, which is similar to CC-BY-NC-ND (Creative Commons Attribution Non-Commercial No Derivatives License). Users are free to use the materials only for non-commercial purposes, provided that original works are properly cited and that no alterations, modifications, or changes to such works is made. This website may contain materials for which ETRI does not hold full copyright or for which ETRI shares copyright in conjunction with other third parties. Without explicit permission, any use of such materials without KOGL indication is strictly prohibited and will constitute an infringement of the copyright of ETRI or of the relevant copyright holders.
J. Kim et. al, "Trends in Lightweight Kernel for Many core Based High-Performance Computing", Electronics and Telecommunications Trends. Vol. 32, No. 4, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
J. Sim et.al, “the Fourth Industrial Revolution and ICT – IDX Strategy for leading the Fourth Industrial Revolution”, ETRI Insight, 2017, KOGL Type 4: Source Indication + Commercial Use Prohibition + Change Prohibition
If you have any questions or concerns about these terms of use, or if you would like to request permission to use any material on this website, please feel free to contact us
KOGL Type 4:(Source Indication + Commercial Use Prohibition+Change Prohibition)
Contact ETRI, Research Information Service Section
Privacy Policy
ETRI KSP Privacy Policy
ETRI does not collect personal information from external users who access our Knowledge Sharing Platform (KSP). Unathorized automated collection of researcher information from our platform without ETRI's consent is strictly prohibited.
[Researcher Information Disclosure] ETRI publicly shares specific researcher information related to research outcomes, including the researcher's name, department, work email, and work phone number.
※ ETRI does not share employee photographs with external users without the explicit consent of the researcher. If a researcher provides consent, their photograph may be displayed on the KSP.